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Abstract. We calculate the linear and circular polarization of gluons produced in conjunction with massive
quarks in the annihilation process e+e− → qq̄G. The linear polarization is calculated in the hadron event
plane as well as in the gluon-beam plane. Beam polarization and polar orientation effects are included in
our discussion. For typical top pair production energies at the Next-Linear-Collider (NLC) the degree of
linear polarization in the hadron event plane remains close to its soft gluon value of 100% over most of
the energy spectrum of the gluon. The linear polarization in the gluon-beam plane is generally smaller
but peaks toward the hard end of the gluon spectrum. The dependence of the linear polarization on
beam polarization and on the polar orientation of the gluon is small. The circular polarization is largest
for maximal gluon energies and shows a strong dependence on the longitudinal beam polarization. The
longitudinal polarization of the beam may therefore be used to tune the circular polarization of the gluon.
The massive quark results are compared with the corresponding results for the massless quark case.

1 Introduction

The polarization of gluons in e+e− annihilation [1,2], in
deep inelastic scattering [3] and in quarkonium decays [1,
4] has been studied in a series of papers dating back to
the early 1980’s. Several proposals have been put forward
to measure the polarization of the gluon among which
is the proposal to measure azimuthal angular correlation
effects in the splitting process of a polarized gluon into a
pair of gluons or quarks [5]. Latter proposal has led to a
beautiful confirmation of the presence of the three-gluon
vertex using e+e− data [6] (see also [7]).

The earlier calculation of the gluon’s polarization in
e+e− annihilations had been done for massless fermions
which was quite sufficient for the purposes of that period.
In the meantime the situation has changed in as much
as the heavy top quark has been discovered at Fermilab
in 1995 whose production properties in e+e− annihila-
tions will be studied in the proposed Next-Linear-Collider
(NLC). In its first stage typical running energies of the
NLC would extend from tt̄-threshold at about 350 GeV to
maximal energies of about 550 GeV. It is quite clear that
top mass effects cannot be neglected in this energy range
even at the highest c.m. energies. It is therefore timely to
redo the calculations of [1,2] for heavy quarks and to in-
vestigate the influence of heavy quark mass effects on the
polarization observables of the gluon. A first step in this
direction was taken by us in [8] where we determined the
linear polarization of the gluon in the process e+e− → tt̄G
taking the hadron event plane (for short: event plane) as
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a reference plane. In [8] we did not take into account az-
imuthal and polar orientation effects of the event plane
relative to the beam. This is done by an appropriate po-
lar and azimuthal averaging process. Beam polarization
effects were only commented on in passing in [8].

In this paper we extend the analysis of [8] in several
directions. We include beam-event orientation and beam
polarization effects in our discussion. We also compute the
circular polarization of the gluon induced by the parity-
odd component of the hadron tensor and/or by longitu-
dinal beam polarization effects. Finally we compute the
linear polarization of the gluon in the gluon-beam plane
which is obtained after an appropriate azimuthal averag-
ing process.

Our paper is structured as follows. Section 2 describes
the general formalism of massive quark plus gluon pro-
duction in e+e− annihilations including beam and gluon
polarization effects. Our production cross section is writ-
ten in terms of three modular building blocks. The first
building block defines the orientation of the lepton beam
relative to the hadron plane and the dependence on the
polarization parameters of the beam. The second build-
ing block specifies the electro-weak model dependence and
the third building block specifies the QCD dynamics in
terms of a set of polarized and unpolarized structure func-
tions. In Sect. 3 we list our results for the twice-differential
O(αs) polarized and unpolarized structure functions as
well as closed form expressions for their once- and twice-
integrated forms. Section 4 contains our numerical results.
We provide plots of the energy dependence of the linear
and circular polarization of the gluon, their polar angle
dependence and their beam polarization dependence. In
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Fig. 1a,b. Quark-gluon opening angle distribution for soft
gluons illustrating the “dead-cone” effect a opening angle dis-
tribution at a fixed c.m. energy of

√
q2 = 500GeV for gluon

energies of 0.5, 1, 2, and 3GeV b opening angle distribution for
a fixed gluon energy of 6GeV at three different c.m. energies
of 370, 500, and 1000GeV

Sect. 5 we discuss the linear polarization of the gluon in
the gluon-beam plane which can be obtained via an az-
imuthal rotation from the event plane. Section 6 contains
our summary and our conclusions.

Before we get to the main topic of this paper we want
to briefly present some numerical evidence for what is re-
ferred to as the “dead-cone” effect which occurs when soft
gluons are radiated off heavy quarks. In the heavy quark
case there is a depletion of gluons close to the direction of
the heavy quark and the antiquark. This is quite different
from the case of gluons radiated off light quarks where
the production peaks towards the collinear limit. Large
angle emission is a welcome effect in e+e− annihilation
since gluons emitted at large angles from the heavy quark
and antiquark directions are easier to reconstruct. If one
is far enough away from the production threshold with
sufficient velocities of the heavy quark and antiquark the
decay products of the heavy quark and antiquark would
tend to go along the original production direction and
would thus stay away from the large-angle soft gluons ra-
diated from the heavy quark and antiquark. For example,
at
√

q2 = 500 GeV and
√

q2 = 1000 GeV one has a quark

(or antiquark) velocity of v = 0.71 and v = 0.94, respec-
tively.

In order to display the “dead-cone” effect we have plot-
ted the quark/gluon opening angle distribution at a c.m.
energy of

√
q2 = 500 GeV for four different soft gluon

energies in Fig. 1a. The quark gluon opening angle θ13 is
given by

cos θ13 =
x2 + (2 − x)w

x
√

(2 − x + w)2 − 4ξ
(1)

At these low energies there is in fact a depletion of gluons
radiated at small opening angles. However, the distribu-
tions rise uniformly to their maximum values at 900 and
do not show a peak at around θ13 = 2m/

√
q2 = 40.100

as predicted in [10]. In Fig. 1b we show the opening angle
distribution for gluons at a fixed energy of E = 6 GeV for
three different values of the c.m. energy. Again there is a
depletion of gluons radiated at small opening angles for all
three c.m. energies. The

√
q2 = 1000 GeV opening angle

distribution does show a peak at around θ13 = 400 which
is somewhat displaced from the peak position θ13 = 20.050

as calculated from the above relation. The two distribu-
tions at lower c.m. energies do not show any peak structure
but rise uniformly to their maximum values at 900.

We mention that some indirect evidence for the “dead-
cone” effect was presented in [11] where we calculated the
mean transverse momentum of the top with regard to the
antitop direction in e+e− annihilations. The mean trans-
verse momentum of the top was found to be only slightly
below the mean gluon energy in the whole range from tt̄-
threshold to 1000 GeV. Since the transverse momentum of
the top has to be balanced by the transverse momentum
of the gluon the near equality of the two means implies
large mean opening angles for the gluon.

2 General formalism

As is usual we shall represent the two-by-two differential
density matrix dσ = dσλGλ′

G
of the gluon with gluon he-

licities λG = ±1 in terms of its components along the unit
matrix and the three Pauli matrices. Accordingly one has

dσ =
1
2
(dσ1l + dσxσx + dσyσy + dσzσz), (2)

where dσ is the unpolarized differential rate and dσ =
(dσx, dσy, dσz) are the three components of the (unnor-
malized) differential Stokes vector. In this paper the (x, y,
z)-components of the Stokes vector will mostly be referred
to the event plane such that the gluon points in the z-
direction and the (qq̄G)-plane defines the (x, z)-plane (for
short: event plane). An exception is Sect. 5 where the lin-
ear polarization of the gluon is calculated in the gluon-
beam plane.

Specifying to e+e− → q(p1)q̄(p2)G(p3) we perform an
azimuthal averaging over the relative beam-event orienta-
tion. After azimuthal averaging the y-component of the



S. Groote et al.: Gluon polarization in e+e− → tt̄G: Polar angle dependence and beam polarization effects 51

Stokes vector dσy drops out [1,2]1. One retains only the
x- and z-components of the Stokes vector which are re-
ferred to as the gluon’s linear polarization in the event
plane and the circular polarization of the gluon, respec-
tively. The differential unpolarized and polarized rates,
differential with regard to the polar beam-event orienta-
tion and the two energy-type variables x = 2p3 · q/q2 and
w = 2(p1 −p2) ·q/q2 (with q = p1 +p2 +p3) are then given
by

dσ(x)

d cos θ dx dw
=

3
8
(1 + cos2 θ)

(
g11

dσ
1(x)
U

dx dw
+ g12

dσ
2(x)
U

dx dw

)

+
3
4

sin2 θ

(
g11

dσ
1(x)
L

dx dw
+ g12

dσ
2(x)
L

dx dw

)

+
3
4

cos θ g44
dσ

4(x)
F

dx dw
, (3)

dσz

d cos θ dx dw
=

3
8
(1 + cos2 θ)g14

dσ4z
U

dx dw

+
3
4

cos θ

(
g41

dσ1z
F

dx dw
+ g42

dσ2z
F

dx dw

)
. (4)

The notation dσ(x) stands for either dσ or dσx, and the
same for dσ

i(x)
α (the indices i = 1, 2, 4 and α = U, L, F are

explained later on). The notation closely follows the one
used in [6]. Noteworthy is the absence of a longitudinal
contribution to the circular polarization with an angular
sin2 θ-dependence. This is a tree-level effect due to the
CP -evenness of the Standard Model interactions.

We have written the electro-weak cross section in mod-
ular form in terms of three building blocks. The first build-
ing block determines the angular beam-event dependence.
For the case at hand one remains with a polar angle de-
pendence after azimuthal integration, where θ is the polar
angle between the gluon and the electron beam. The sec-
ond building block specifies the electro-weak model depen-
dence through the parameters gij (i, j = 1, . . . , 4). They
are given by

g11 = Q2
f − 2QfvevfRe χZ + (v2

e + a2
e)(v

2
f + a2

f )|χZ |2,
g12 = Q2

f − 2QfvevfRe χZ + (v2
e + a2

e)(v
2
f − a2

f )|χZ |2,
g14 = 2QfveafRe χZ − 2(v2

e + a2
e)vfaf |χZ |2,

g41 = 2QfaevfRe χZ − 2veae(v2
f + a2

f )|χZ |2,
g42 = 2QfaevfRe χZ − 2veae(v2

f − a2
f )|χZ |2,

g44 = −2QfaeafRe χZ + 4veaevfaf |χZ |2, (5)

where, in the Standard Model, χZ(q2) = gM2
Zq2/(q2 −

M2
Z + iMZΓZ), with MZ and ΓZ the mass and width of

the Z0 and g = GF (8
√

2πα)−1 ≈ 4.49 · 10−5 GeV−2. Qf

are the charges of the final state quarks; ve and ae, vf and
af are the electro-weak vector and axial vector coupling

1 The linear gluon-beam plane polarization observable of the
gluon discussed in Sect. 5 involves a different azimuthal av-
eraging process. For this application one needs to retain one
particular y-component of the Stokes vector in the event plane

constants. For example, in the Weinberg-Salam model, one
has ve = −1 + 4 sin2 θW , ae = −1 for leptons, vf = 1 −
8
3 sin2 θW , af = 1 for up-type quarks (Qf = 2

3 ), and vf =
−1 + 4

3 sin2 θW , af = −1 for down-type quarks (Qf =
− 1

3 ). In this paper we use Standard Model couplings with
sin2 θW = 0.226.

The third building block, finally, is given by the hadron
dynamics, i.e. by the current-induced production of a
heavy quark pair with subsequent gluon emission. The
QCD dynamics is encoded in the hadronic rate functions
dσ

i(x)
α /dx dw and dσiz

α /dx dw with specific components de-
noted by the indices α and i, and the polarization indices
x and z. The hadronic rate functions can in turn be re-
lated to the polarized and unpolarized hadronic structure
functions H

i(x)
α and Hiz

α according to

dσ
i(x)
α

dx dw
=

α2

6πq2 Hi(x)
α (x, w) ,

dσiz
α

dx dw
=

α2

6πq2 Hiz
α (x, w) . (6)

The different hadronic structure functions are specific com-
ponents of the hadronic three-body tensor Hµν induced by
the product of vector current (V ) and axial vector current
(A) interactions. In the case of massive quark pair produc-
tion one has four different independent current products
which are denoted by the upper index i = 1, . . . , 4, where

H1 =
1
2
(
HV V + HAA

)
, H2 =

1
2
(
HV V − HAA

)
,

H3 =
i

2
(
HVA − HAV

)
, H4 =

1
2
(
HVA + HAV

)
. (7)

We have temporarilly dropped all further indices on the
hadron tensor in (7).

We mention that, because of CP -invariance and be-
cause we are calculating at tree level, the linear combi-
nation H3 does not contribute to the cross section and
the spin observables considered in this paper. The lower
index α = U, L, F specifies the relevant density matrix el-
ement of the gauge boson that determines the polar angle
cos θ-distribution. The three elements of the density ma-
trix are referred to as the “unpolarized transverse” com-
ponent HU = H+++H−− = H11+H22, the “longitudinal”
component HL = H00 and the “forward-backward asym-
metric” component HF = H++ − H−− = −i(H12 − H21)
where we have listed both the spherical and Cartesian
components of the relevant density matrix elements. The
three (U, L, F ) components can be obtained from the full
hadron tensor Hµν by covariant contraction as discussed
in [6]. The unpolarized hadronic tensor Hi

α and the po-
larized hadronic tensors Hix

α and Hiz
α are defined in exact

analogy to (2).
Equations (3) and (4) give the differential cross section

for unpolarized beams. The case of longitudinally polar-
ized beams can easily be included. For the unpolarized
and linearly polarized rates dσ

i(x)
α one has to effect the

replacement

g1i → (1 − h−h+)g1i + (h− − h+)g4i (i = 1, 2)
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g44 → (h− − h+)g14 + (1 − h−h+)g44 (8)

where h+ and h− are the degrees of the longitudinal (or
helicity) polarization of the positron and electron beam,
respectively. For the circularly polarized rates dσiz

α one
has the replacements

g14 → (1 − h−h+)g14 + (h− − h+)g44

g4i → (h− − h+)g1i + (1 − h−h+)g4i (i = 1, 2). (9)

Transverse beam polarization effects can also be easily
included in the framework of our formalism (see e.g. [9])
but will not be further discussed in this paper.

After having described the general formalism we now
go on to present explicit expressions for the polarized and
unpolarized hadronic structure functions for the annihila-
tion process e+e− → qq̄G in the following section.

3 Polarized
and unpolarized structure functions

The various components of the hadronic tensor can be
easily calculated from the relevant tree level Feynman di-
agrams and are given by

H1
U (x, w) = −16

(
2
x

− 2 + x

)
1
x

− 64t+(x, w)

+32
(

2
x

− 2 + x

)
t`+(x, w),

H2
U (x, w) = −32ξt+(x, w) + 16ξ

(
2 − ξ

x
− 2
)

t`+(x, w),

H1
L(x, w) = 32

(
1
x

− 1
)

1
x

+ 16ξt+(x, w)

−8ξ

(
6 − ξ

x
− 2 − x

)
t`+(x, w), (10)

H2
L(x, w) = −16ξt+(x, w)

+8ξ

(
2 − ξ

x
− 2 − x

)
t`+(x, w),

H4
F (x, w) = 64t−(x, w) − 32

(
2
x

− 2 + x

)
t`−(x, w),

H1x
U (x, w) = − 32

(
1
x

− 1
)

1
x

− 64t+(x, w)

+64
(

1
x

− 1
)

t`+(x, w),

H2x
U (x, w) = −32ξt+(x, w) + 16ξ

(
2 − ξ

x
− 2
)

t`+(x, w),

H1x
L (x, w) = 32

(
1
x

− 1
)

1
x

+ 16ξt+(x, w)

−8ξ

(
6 − ξ

x
− 2
)

t`+(x, w), (11)

H2x
L (x, w) = −16ξt+(x, w) + 8ξ

(
2 − ξ

x
− 2
)

t`+(x, w),

H4x
F (x, w) = 64t−(x, w) − 64

(
1
x

− 1
)

t`−(x, w),

H4z
U (x, w) = 64xt−(x, w) − 32(2 − x)t`−(x, w),

H4z
L (x, w) = 0,

H1z
F (x, w) = −16(2 − x)

1
x

− 64xt+(x, w)

+32(2 − x)t`+(x, w), (12)

H2z
F (x, w) = 0

with ξ = 4m2
q/q2, where we have used the abbreviations

t±(x, w) :=
ξ

4

(
1

(x − w)2
± 1

(x + w)2

)
,

t`±(x, w) :=
1
2

(
1

x − w
± 1

x + w

)
. (13)

We mention that the vanishing of the hadron tensor com-
ponents H4z

L (x, w) and H2z
F (x, w) is a tree-level effect and

is due to the CP -invariance of the underlying Standard
Model interaction.

Note that under quark-antiquark exchange (charge con-
jugation) t± → ±t± and t`± → ±t`±. This implies that the
charge conjugation odd contributions t− and t`− vanish if
one does not discriminate between quarks and antiquarks.
In the following we wish to distinguish between the cases
where the quark flavours are identified or not identified
and we will refer to these two cases as the flavour tag and
flavour no-tag cases, respectively.

Let us briefly pause to discuss the mass zero limit
of the hadronic tensor components. The mass zero limit
can easily be taken by setting ξ = 0 in (10–12). From
the terms that remain after taking the ξ → 0 limit it is
only the terms proportional to t`±(x, w) that are impor-
tant, because they are mass singular in the ξ → 0 limit.
In fact, when one performs the w-integration including
flavour-tagging, the mass singluar functions t`±(x, w) inte-
grate to an x-independent logarithmic factor and a finite
(x-dependent) term, i.e.

∫
t`±(x, w)dw → − ln ξ + c± (see

(13)). Keeping only the dominant logarithmic term one
has in the ξ → 0 limit

H1
U (x) → −32

(
2
x

− 2 + x

)
ln ξ ,

H4
F (x) → 32

(
2
x

− 2 + x

)
ln ξ ,

H1x
U (x) → −64

(
1
x

− 1
)

ln ξ ,

H4x
F (x) → 64

(
1
x

− 1
)

ln ξ ,

H4z
U (x) → 32(2 − x) ln ξ ,

H1z
F (x) → −32(2 − x) ln ξ . (14)

The remaining terms in (10–12) are subdominant. The
expressions in (14) determine the energy dependence of
the linear and circular polarization of the gluon in the
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mass zero limit. They will be used later on to compare
with the corresponding expressions in the massive case.

Returning to the case of massive quarks, the integra-
tion over the phase-space parameter w can be easily done.
However, as mentioned earlier on, C-odd observables av-
erage out to zero in this integration if one does not employ
flavour-tagging. For example, the contributions to the cir-
cular polarization vanish when we integrate over the whole
range of w since the integration variable is antisymmetric
in the quark and antiquark variables. Nonvanishing val-
ues of the circular polarization are obtained only if one
applies flavour-tagging, i.e. one has to take care to dis-
tinguish between quark and antiquark energies in the in-
tegration. Thus, for a fixed value of the gluon’s energy,
one first integrates over positive values of the w-variable
and then subtracts the integral over negative w-values. Or,
equivalently, one just takes twice the value of the circular
polarization calculated for positive w.

Let us list the few basic w-integrals that are needed in
the calculation. The integration has to be done between
the symmetric phase space boundaries −w+ and w+ where

w+(x) = x

√
1 − x − ξ

1 − x
. (15)

One has∫ +w+(x)

−w+(x)
t+(x, w)dw =

(
1
x

− 1
)

1
x

w+(x),

∫ +w+(x)

−w+(x)
t`+(x, w)dw = ln

(√
1 − x +

√
1 − x − ξ√

1 − x − √
1 − x − ξ

)

=: t`+(x), (16)

2
∫ +w+(x)

0
t−(x, w)dw =

1 − ξ

x
− 1,

2
∫ +w+(x)

0
t`−(x, w)dw = ln

(
1 − x

ξ

)
=: t`−(x).

where we have employed flavour-tagging for the last two
C-odd integrals as discussed before. Using these basic in-
tegrals we obtain the once-integrated structure functions
Hi

α(x), Hix
α (x) and Hiz

α (x). One has

H1
U (x) = −32

(
4
x

− 4 + x

)
1
x

w+(x)

+32
(

2
x

− 2 + x

)
t`+(x),

H2
U (x) = −32ξ

(
1
x

− 1
)

1
x

w+(x)

+16ξ

(
2 − ξ

x
− 2
)

t`+(x),

H1
L(x) = 16(4 + ξ)

(
1
x

− 1
)

1
x

w+(x)

−8ξ

(
6 − ξ

x
− 2 − x

)
t`+(x),

H2
L(x) = −16ξ

(
1
x

− 1
)

1
x

w+(x)

+8ξ

(
2 − ξ

x
− 2 − x

)
t`+(x),

H4
F (x) = 64

(
1 − ξ

x
− 1
)

− 32
(

2
x

− 2 + x

)
t`−(x), (17)

H1x
U (x) = −128

(
1
x

− 1
)

1
x

w+(x) + 64
(

1
x

− 1
)

t`+(x)

H2x
U (x) = −32ξ

(
1
x

− 1
)

1
x

w+(x)

+16ξ

(
2 − ξ

x
− 2
)

t`+(x),

H1x
L (x) = 16(4 + ξ)

(
1
x

− 1
)

1
x

w+(x)

−8ξ

(
6 − ξ

x
− 2
)

t`+(x),

H2x
L (x) = −16ξ

(
1
x

− 1
)

1
x

w+(x)

+8ξ

(
2 − ξ

x
− 2
)

t`+(x),

H4x
F (x) = 64

(
1 − ξ

x
− 1
)

− 64
(

1
x

− 1
)

t`−(x), (18)

H4z
U (x) = 64(1 − ξ − x) − 32(2 − x)t`−(x),

H4z
L (x) = 0,

H1z
F (x) = −32(4 − 3x)

1
x

w+(x) + 32(2 − x)t`+(x),

H2z
F (x) = 0. (19)

Our notation is such that H(x) =
∫

H(x, w)dw. The dom-
inant leading logarithmic ln ξ terms in the zero mass limit
derive from the logarithmic functions tl+(x) and tl−(x) and
have been listed before in (14).

The last step is the integration over the second phase-
space parameter x. It is clear that we have to introduce a
gluon energy cutoff at the soft end of the gluon spectrum
in order to keep the rate finite. Denoting the cutoff energy
by Ec = λ

√
q2 the integration extends from x = 2λ =

2Ec/λ
√

q2 to x = 1 − ξ. We obtain

H1
U = −128G(−1) + 128G(0) − 32G(1)

+64G`(−1) − 64G`(0) + 32G`(1),
H2

U = −32ξG(−1) + 32ξG(0)
+16ξ(2 − ξ)G`(−1) − 32ξG`(0),

H1
L = 16(4 + ξ)G(−1) − 16(4 + ξ)G(0) − 8ξ(6 − ξ)G`(−1)

+16ξG`(0) + 8ξG`(1),
H2

L = −16ξG(−1) + 16ξG(0)
+8ξ(2 − ξ)G`(−1) − 16ξG`(0) − 8ξG`(1),

H4
F = −8(13 − 12ξ − ξ2 − 8Li2(1 − ξ))

−48 ln ξ − 64(1 − ξ + ln ξ) ln
(

2λ

v2

)
, (20)

H1x
U = −128G(−1) + 128G(0) + 64G`(−1) − 64G`(0),
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H2x
U = −32ξG(−1) + 32ξG(0)

+16ξ(2 − ξ)G`(−1) − 32ξG`(0),
H1x

L = 16(4 + ξ)G(−1) − 16(4 + ξ)G(0)
−8ξ(6 − ξ)G`(−1) + 16ξG`(0),

H2x
L = −16ξG(−1) + 16ξG(0)

+8ξ(2 − ξ)G`(−1) − 16ξG`(0),
H4x

F = −64(2(1 − ξ) − Li2(1 − ξ)) − 64 ln ξ

−64(1 − ξ + ln ξ) ln
(

2λ

v2

)
, (21)

H4z
U = 24(1 − ξ)(3 − ξ) + 48 ln ξ,

H4z
L = 0,

H1z
F = −128G(0) + 96G(1) + 64G`(0) − 32G`(1),

H2z
F = 0 (22)

where

G(m) :=
∫ 1−ξ

2λ

xm−1w+(x)dx. (23)

Full analytical results for the integrals have been given
before in [8]. Here we employ a small λ-expansion and re-
tain only the leading lnλ and the next-to-leading constant
contributions in the small λ-expansion. One has

G(−1) = − ln
(

1 + v

1 − v

)
− v ln

(
λξ

2v2

)
, (24)

G(0) = v − 1
2
ξ ln

(
1 + v

1 − v

)
, (25)

G(1) =
1
4
(2 + ξ)v − ξ

8
(4 − ξ) ln

(
1 + v

1 − v

)
, (26)

G`(m) :=
∫ 1−ξ

2λ

xmt`+(x)dx, (27)

G`(−1) = − ln
(

1 + v

1 − v

)
ln
(

λ(1 + v)2

2v2

)

−Li2

(
4v

(1 + v)2

)
, (28)

G`(0) = −v +
1
2
(2 − ξ) ln

(
1 + v

1 − v

)
, (29)

G`(1) = −3
8
(2 − ξ)v +

1
16

(8 − 8ξ + 3ξ2)

× ln
(

1 + v

1 − v

)
. (30)

We have checked that the above leading and next-to-lead-
ing log expansion has sufficient accuracy for the numerical
applications to be discussed in Sect. 4.

4 Numerical results

We are now in the position to discuss the various differen-
tial distributions of the polarization variables with regard

to the gluon energy. The QCD dynamics is completely
specified by the various hadron tensor components assem-
bled in (10)–(12). In order to exhibit the quark mass and
flavour dependence of the gluon’s polarization we shall
present results for the top, bottom and charm pair pro-
duction cases in some of the figures. We begin our discus-
sion with the linear polarization of the gluon in the hadron
event plane defined by the plane spanned by the quark,
antiquark and the gluon. As discussed before the linear
polarization of the gluon in the event plane is determined
by the normalized x-component of the Stokes vector. To
start with we integrate out the polar angle dependence in
the numerator and denominator of the ratio of polarized
and unpolarized cross sections given in (3). One has

P x(x) =
dσx/dx

dσ/dx
, (31)

where dσx/dx and dσ/dx are the twice-integrated po-
larized and unpolarized differential cross-sections appear-
ing in (3). In Fig. 2a we show the energy dependence of
the linear polarization of the gluon produced in associa-
tion with charm and top quark pairs at a c.m. energy of√

q2 = 500 GeV. We have chosen to rescale the scaled
gluon energy x in this plot to its maximal value given by
xmax = 1 − ξ. Figure 2a shows that the linear polariza-
tion remains close to its maximal value of 100% at the
soft gluon point over a large portion of gluon phase-space.
For the top quark case the polarization remains above
the value in the charm quark case when plotted against
x/xmax

2. In Fig. 2b we show the differential cross section
which enters in the normalization of the polarization. The
differential cross section for gluons produced in conjunc-
tion with top quark pairs can be seen to be approximately
one order lower than for gluons produced in conjunction
with charm quark pairs.

In Fig. 3a we display the linear polarization of the
gluon for three different values of the c.m. energy plotted
against the scaled energy variable x/xmax. As the low-
est c.m. energy we choose

√
q2 = 370 GeV which is far

enough above tt̄-threshold for a perturbative treatment
to be valid. The linear polarization remains quite close
to its soft-gluon value of 100% over most of the available
phase-space due to the fact that there is not much energy
available for the gluon so close to threshold. At the hard
end of the spectrum the linear polarization has to go to
zero for the simple reason that one can no longer define
a hadronic plane in this collinear configuration. As the
c.m. energy is increased, the linear polarization decreases
for a given fixed fractional energy value x/xmax. For the
largest c.m. energy value

√
q2 = 1000 GeV in Fig. 3a the

linear polarization is quite close to the zero mass limit-
ing value also shown Fig. 3a. As discussed before, the zero
mass result is determined by the collinear configurations
of the gluon, i.e. by the ln ξ contributions in (14). Using

2 When the linear polarization is compared at equal gluon
energies, this relation is reversed
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a

b

Fig. 2. a Energy dependence of the linear polarization of the
gluon in the event plane b energy dependence of the differential
cross section e+e− → tt̄G and e+e− → cc̄G

the results of (14), one obtains3.

P x(x) =
2(1 − x)

2 − 2x + x2 . (32)

Note that the zero mass linear polarization no longer de-
pends on the electro-weak model parameters, on the
flavour of the produced quark or on the polarization of
the beam. The electro-weak model dependence, the flavour
and beam polarization dependence is the same in the nu-
merator and in the denominator and drops out when tak-
ing the ratio. It can be checked that the electro-weak
model, the flavour and beam polarization dependence of
the linear polarization is quite weak also in the massive
case for the c.m. energies considered here. By comparing
Fig. 2a with Fig. 3a one sees that the linear polarization
in the charm quark case is already quite close to the zero
mass case indicating that the approach to the asymptotic
value is quite fast. This also explains the closeness of the√

q2 = 1000 GeV curve to the zero mass curve.
In Fig. 3b we show the differential cross section for

e+e− → tt̄G for the same three c.m. energies as in Fig. 3a.

3 The limiting value of the polarization agrees with the cor-
responding result (4)–(9) in [1] (second reference) in the limit
x0, δ → 0

a

b

Fig. 3. a Energy dependence of the linear polarization of the
gluon in the event plane for different c.m. energies b energy
dependence of the differential cross section for e+e− → tt̄G for
different c.m. energies

The differential cross section decreases as the c.m. energy
is increased. As expected, the decrease is governed by the
usual q2-factor in the differential cross section.

In Fig. 4 we show the circular polarization of the gluon
for the same three c.m. energies as in Fig. 3 including again
the zero mass case for up-type quarks. It is clear that we
are employing flavour tagging since the circular polariza-
tion would be zero otherwise. The circular polarization is
positive in all four cases and peaks toward the hard end
of the gluon spectrum4. The circular polarization is zero
at the soft end of the spectrum which is simple to under-
stand since the linear polarization already saturates the
total polarization bound of 100% at this point. The circu-
lar polarization remains quite small over most of the range
of gluon energies except for the zero mass case. The limit-
ing zero mass behaviour is again governed by the collinear
configuration determined by the ln ξ contributions in (14).
One obtains

P z(x) = −g14

g11

x(2 − x)
2 − 2x + x2 (33)

4 Note that the positive value holds for Eq ≥ Eq̄ and becomes
negative for Eq ≤ Eq̄
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a

b

Fig. 4. a Energy dependence of the circular polarization of the
gluon produced with a top quark pair and a zero mass up-type
quark pair for different c.m. energies b energy dependence of
the circular polarization of the gluon produced with zero mass
up-type and down-type quarks and with a bottom quark pair
at
√

q2 = 1000GeV

Note that the
√

q2 = 1000 GeV curve in Fig. 4 is still a
large way away from the zero mass limit indicating that
the approach to asymptotia is much slower for the cir-
cular polarization than what was observed for the linear
polarization.

The x-dependent factor in the mass zero formula (33)
for the circular polarization starts from zero at the soft-
gluon point and reaches unity at the hard end of the
spectrum. Apart from the x-dependent factor the size of
the circular polarization is governed by the ratio of elec-
troweak factors −g14/g11. Above the top quark thresh-
old the ratio −g14/g11 is only mildly q2-dependent but is
strongly flavour dependent. For example, for

√
q2 = 370,

500 and 1000 GeV one finds 0.273, 0.265 and 0.257 for the
up-type quarks, and 0.678, 0.670 and 0.657 for down-type
quarks, respectively. From the numerical values of the ra-
tio −g14/g11 it is clear that one generally obtains much
larger values for the circular polarization of down-type
quarks than for up-type quarks. In Fig. 4b we provide a
plot of the x-dependence of the circular polarization for√

q2 = 1000 GeV in the zero mass case for up-type and

a

b

Fig. 5. a Energy dependence of the circular polarization of the
gluon in e+e−(h−) → tt̄G with electron beam polarization b
energy dependence of the differential cross section e+e−(h−) →
tt̄G with electron beam polarization

down-type quarks. The above numerical results of the ra-
tio g14/g11 can be clearly identified at the hard end of
the spectrum. For the sake of comparison we have also
plotted the corresponding curve for bottom quarks with
mb = 4.1 GeV. Mass effects tend to reduce the circular po-
larization showing again that the approach to the asymp-
totic formula (33) is quite slow.

In Fig. 5a we display the beam polarization dependence
of the circular polarization assuming that the electrons
are polarized (the beam polarization dependence of the
linear polarization is quite weak). The circular polariza-
tion of the gluons can be seen to be strongly dependent
on beam polarization effects. One observes a strong polar-
ization transfer effect from the helicity polarization of the
electrons to the circular polarization of the gluon which
can enhance the circular polarization of the gluon up to a
factor of ten. In Fig. 5b we exhibit the beam polarization
dependence of the differential cross section. The differen-
tial cross section is enhanced by about 50% for negative
electron helicities and reduced by about the same amount
for positive electron helicities.

In Fig. 6a and Fig. 6b we show the cos θ-dependence of
the linear and circular polarization of the gluon where we
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a

b

c

Fig. 6. a Polar angle dependence of the linear polarization of
the gluon in the event plane b polar angle dependence of the
circluar polarization of the gluon c polar angle dependence of
the differential cross section

remind the reader that θ is the polar angle of the gluon
relative to the electron beam. The dependence is shown
for a c.m. energy of

√
q2 = 500 GeV and for three dif-

ferent gluon energies. The cos θ-dependence of the linear
polarization is quite weak for all three gluon energies but
becomes somewhat larger as one moves away from the soft
gluon point where the cos θ-distribution is flat. In contrast
to this, the circular polarization shows a strong asymme-
try effect and turns from positive to negative values as

a

b

Fig. 7. a Mean linear polarization of the gluon in the event
plane plotted against the c.m. energy for different cutoff ener-
gies b total cross section for e+e− → tt̄G plotted against the
c.m. energy for different cutoff energies

cos θ moves from −1 to +1. The asymmetry effect becomes
larger as the gluon becomes harder. As Fig. 6c shows, the
pronounced asymmetry of the circular polarization results
mainly from the numerator of the relevant polarization
expression. The differential cross section shown in Fig. 6c
does not possess a very pronounced cos θ-dependence.

In Fig. 7a we show a plot of the average linear po-
larization of the gluon as a function of the c.m. energy
for three different cutoff values Ec = λ

√
q2 = 3, 5 and

10 GeV. Gluon energies of this magnitude are sufficient
to make the corresponding gluon jets detectable. The av-
erage linear polarization of the gluon rises steeply from
threshold and quickly attains very high values above 95%.
The linear polarization becomes larger for smaller values
of Ec = λ

√
q2 and tends to 100% as the cutoff parame-

ter tends to zero. The approach to the asymptotic value
P x = 100% is, however, rather slow. We also show the
average linear polarization of the gluon limit when the
quark mass goes to zero for a cutoff energy of 3 GeV. The
average linear polarization is smaller than in the massive
case. In Fig. 7b we show the cutoff dependence of the to-
tal cross section as functions of the c.m. energy. The cross
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sections rise steeply from threshold and then turn over
to their canonical 1/q2-behaviour. The cutoff dependence
of the cross section is still moderate for the three chosen
cutoff values.

5 Linear polarization in the gluon-beam plane

In Sects. 2, 3 and 4 the linear polarization of the gluon
has been specified relative to the event plane. A measure-
ment of the polarization would require the reconstruction
of the event plane which may not always be simple. If is
much easier to determine the gluon-beam plane since the
beam coordinates are known a priori. In order to deter-
mine the (unnormalized) components of the Stokes vector
in the gluon-beam plane one needs to rotate the event
plane Stokes vector around the gluon momentum axis by
the azimuthal angle χ between the the two planes. One
obtains5

Hx′ = cos 2χHx − sin 2χHy

Hy ′ = sin 2χHx + cos 2χHy (34)
Hz ′ = Hz

where (Hx′, Hy ′, Hz ′) are the components of the Stokes
vector in the gluon-beam plane. Since one is rotating
around the gluon axis, the circular component Hz is not
affected by this rotation. We have dropped all further in-
dices on the hadron tensor in (34).

We shall not write down the full polar cos θ- and az-
imuthal χ-dependence of the polarized cross section in the
new system but shall rather completely integrate out the
polar and azimuthal angle dependence. One then obtains

Hx
T

′ = −1
2
(Hx

T + Hy
4 )

Hy
T

′ = 0 (35)

where the y′-component Hy ′ drops out after azimuthal
averaging. The hadron tensor components “T” and “4” on
the right hand side are still specified in the event system
and are given by (see [9])

Hx
T =

1
2
(Hx

+− + Hx
−+) =

1
2
(−Hx

11 + Hx
22)

Hy
4 = −1

2
(Hy

+− − Hy
−+) = −1

2
(Hy

12 + Hy
21). (36)

Again these components can be calculated from the
relevant tree-level Feynman diagrams. One finds

H1x
T

′
(x, w) =

8
x2 + 8ξt+(x, w) − 4ξ

4 − ξ

x
t`+(x, w)

H2x
T

′
(x, w) = 0. (37)

5 Note that the Stokes vector is not a true vector and thus
its transformation behaviour under rotations differs from that
of a true three-vector

Fig. 8. Energy dependence of the linear polarization of the
gluon in the gluon-beam plane

Since we are interested in the energy dependence of
the linear polarization, we also give their once-integrated
forms. One has

H1x
T

′
(x) = 8

(
2 + ξ

x
− ξ

)
w+(x)

x
− 4ξ

4 − ξ

x
t`+(x)

H2x
T

′
(x) = 0. (38)

It is quite evident that Hx
T

′ has a smooth zero mass limit,
i.e. there is no collinear singularity in the (x, w)-dependent
structure function Hx

T
′(x, w) in (37). This must be con-

trasted with the corresponding structure function describ-
ing the linear polarization in the event plane which pos-
sesses a collinear singularity (see (14)). We therefore antic-
ipate that the linear polarization in the gluon-beam plane
will be generally smaller than the linear polarization in
the event plane and that it tends to zero in the zero mass
limit.

We are now in the position to calculate the linear po-
larization of the gluon in the gluon-beam plane. The gen-
eral expression for the linear polarization in the gluon-
beam plane reads

P x′ =
g11H

1x
T

′ + g12H
2x
T

′

g11(H1
U + H1

L) + g12(H1
U + H2

L)
(39)

where we have retained the H2x
T

′ term in the numerator
even though its contribution is zero.

In Fig. 8 we show the (x/xmax)-dependence of the lin-
ear polarization of the gluon in the gluon-beam plane for
the top quark case for three different c.m. energies. The
linear polarization is generally small and peaks toward
the hard end of the spectrum. Also the linear polariza-
tion tends to become larger when the c.m. energy is in-
creased. This is counterintuitive from what was said before
about the absence of a collinear singularity for the polar-
ized structure function when v → 1. The approach to the
limiting behaviour of P x′ (for v → 1) is, however, so slow
that one is still very far away from the limiting behaviour
for the c.m. energies considered in Fig. 8. Note that the
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linear polarization neither vanishes at the soft end of the
spectrum nor at the hard end. In fact, one obtains

P x′(x = 0) (40)

=
g11
(−2(3 − v2)v + (1 − v2)(3 + v2)tl

)
2((3 + v2)g11 + 3(1 − v2)g12) (2v − (1 + v2)tl)

at the soft gluon point, where

v =
√

1 − ξ, tl = ln
(

1 + v

1 − v

)
. (41)

In the zero mass limit one obtains P x′(0) → 0 as expected.
At the hard end of the spectrum for x = xmax = 1 − ξ,
the linear polarization is given by

P x′(xmax) =
g11

(3 − v2)g11 − (1 − v2)g12
. (42)

Note that the mass zero limit of (42) is finite, i.e. P x′(xmax)
→ 1/2 as v → 1. Again one would naively expect P x′ → 0
in this limit. However, one is picking up a phase space zero
in the denominator of the polarization expression at the
hard gluon point which cancels the collinear singularity.
The overall effect of the cancellation is that the polariza-
tion tends to a finite value as v → 0. In fact, when one
plots the energy dependence of the linear polarization for
very small quark masses, the linear polarization tends to
zero over the whole energy range, but shoots up to the
value 0.5 very close to the endpoint.

6 Summary and conclusions

We have provided a detailed discussion of the linear and
circular gluon polarization of gluons produced in associ-
ation with heavy and light quark pairs in e+e− annihila-
tions. We have studied beam polarization and polar ori-
entation effects on the polarization of the gluon. The lin-
ear polarization of the gluon remains close to its classical
soft gluon value of 100% and is only mildly dependent
on the polarization of the beam, on the polar orientation
of the gluon and on the flavour of the heavy quark pair
produced in association with the gluon. Quark mass ef-
fects enhance the linear polarization of the gluon when
compared at the same scaled enery scaled to the maximal
energy. The circular polarization of the gluon is strongly
dependent on the polarization of the beam, on the polar
orientation of the gluon and on the flavour of the heavy
quark pair produced in association with the gluon. The
dependence on these effects can be exploited to optimally
tune the circular polarization of the gluon. However, to

see a nonzero circular polarization of the gluon one needs
to tag the flavour of the associated quark/antiquark since
the circular polarization is odd under charge conjugation
and averages to zero without flavour tagging. This should
not be so difficult for the heavy-flavoured quarks. To actu-
ally measure the circular polarization of gluons one needs
to study the fragmentation of circularily polarized gluons
into polarized particles whose polarization can be mea-
sured.

If one aims to study gluon polarization effects in the
splitting process e+e− → tt̄G(G → GG, qq̄), the present
on-shell calculation should be sufficient to identify and
discuss the leading effects of gluon polarization without
having to perform a full O(α2

s) calculation of e+e− →
tt̄GG and e+e− → tt̄qq̄ [5].
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